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Abstract
Narrative comprehension is a challenging task
that requires a deep understanding of the foun-
dational elements of narratives. Acquiring this
skill requires extensive annotated data. To miti-
gate the burden of data annotation, we present
PARROT , a zero-shot approach for narrative
reading comprehension through parallel read-
ing, which involves two parallel narratives that
tell the same story. By leveraging one narrative
as a source of supervision signal to guide the
understanding of the other, PARROT abstracts
the textual content and develops genuine nar-
rative understanding. Evaluation conducted
on two narrative comprehension benchmarks
demonstrates that PARROT surpasses previous
zero-shot approaches and achieves compara-
ble performance to fully supervised models.
The code will be available at https://github.
com/zhaochaocs/Parrot.

1 Introduction

Narratives have long been recognized as a valu-
able resource for linguistic, scientific, cultural,
and social learning (Rosen, 1985; Knoespel, 1991;
Lyle, 2000; Nash, 2005; Bettelheim, 2010). Nar-
rative comprehension, therefore, is considered a
fundamental aspect of human intelligence (Bruner,
1997) and an important tool for cognitive develop-
ment and meaning-making (Polkinghorne, 1988).
With this motivation, previous research has tack-
led the task of narrative reading comprehension,
which involves automatically comprehending a
given narrative and answering questions related to
it (Hirschman et al., 1999; Richardson et al., 2013).

However, in comparison to general text com-
prehension, which typically focuses on the under-
standing of named entities and factual informa-
tion (Rajpurkar et al., 2016), narrative comprehen-
sion presents unique challenges. Specifically, it
requires understanding the foundational elements
of narratives. These elements include events along
with their temporal and causal connections; settings

Narrative 𝒩: US Navy
Colonel Pete “Maverick”
Mitchell is a test pilot of the
hypersonic “Darkstar” scramjet
program. Rear Admiral Chester
“Hammer” Cain plans to cancel
“Darkstar” in favor of funding a more
promising drone program. To meet
the final contract specification and
save the program, Maverick
unilaterally changes the target speed
for that day's test from Mach 9 to
Mach 10.

Narrative 𝒩!: Colonel
Pete “Maverick” Mitchell

is a test pilot in the Mojave
Desert. One day, Rear Admiral
Chester “Hammer” Cain attempted
to suspend the hypersonic flight test
machine “Darkstar” project and
intended to reallocate the funds to
an unmanned drone program under
his command. Before Cain arrived,
Maverick decided to push the
prototype to its contractually
specified speed of Mach 10.

Q1: Who is the test pilot? [exact match]
Pete “ Maverick” Mitchell 

Q2: Which program faces potential cancelation? [paraphrase]
Darkstar

Q3: What’s the relation between Maverick and Darkstar? [multi-hop reasoning]
Maverick is the test pilot of Darkstar

Q4: What motivates Hammer to fund drone program? [character’s motivation]
He thinks that program is more promising

Q5: Why does maverick pilot Darkstar at Mach 10? [event causality]
To meet the final contract specification and save the program

Figure 1: Illustration of parallel reading. N and N+

are different renderings of the same story. The key idea
is to ask questions from N and encourage the model to
answer them from N+. This helps the model in learning
deep comprehension skills (as indicated in []).

such as the time, place, and environment; as well
as characters, including their motivations, desires,
emotions, and relationships with other characters.
Together they exhibit intricate plot structures and
involve complex character interactions, making it
challenging for machines to comprehend. Despite
the availability of extensively annotated data for
general text reading comprehension, there is cur-
rently a lack of sufficient annotated data in the
narrative domain, and it is not optimal to directly
use models trained on general text data for narra-
tive reading comprehension. Hence, there is a need
to develop data-efficient learning approaches for
narrative reading comprehension.

To address the aforementioned challenges, our
idea is to leverage parallel reading: reading two
parallel narratives that convey the same story but
differ in various aspects of story-telling style. This
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Narrative 𝒩!

Colonel Pete  “Maverick” Mitchell is a test 
pilot in the Mojave Desert. One day, Rear 
Admiral Chester “Hammer” Cain attempted 
to suspend the hypersonic flight test 
machine “Darkstar” project and intended to 
reallocate the funds to an unmanned drone 
program under his command. Before Cain
arrived, Maverick decided to push the 
prototype to its contractually specified
speed of Mach 10.

[Some plots have been omitted …]

Afterward, Maverick visited Penny's shop, 
but she was away on a yacht cruise. They 
spent time together maintaining the P-51 at 
his house. One day, Penny visited with her 
daughter. Then Maverick took Penny aboard 
the P-51, taking off towards the sunset. 
Meanwhile, Rooster looked at a photo of 
himself, Goose and Maverick, reminiscing 
about his father with a smile.

Narrative 𝒩
US Navy Colonel [Pete “Maverick” Mitchell 
NER-PER] is  a  test pilot of the hypersonic 
“Darkstar” scramjet program. Rear Admiral 
Chester “Hammer” Cain plans to cancel 
“Darkstar” in favor of [funding a more 
promising drone program CONST-VP]. [To 
meet the final contract specification and 
save the program SRL-PRP], Maverick 
unilaterally changes the target speed for 
that day's test from Mach 9 to Mach 10.

Masking & Prediction
US Navy Colonel [mask1|who] is  a  test pilot of the 
hypersonic “Darkstar” scramjet program. Rear Admiral 
Chester “Hammer” Cain plans to cancel “Darkstar” in 
favor of [mask2|what]. [mask3|why], Maverick 
unilaterally changes the target speed for that day's test 
from Mach 9 to Mach 10.

[mask1|who]: Pete “Maverick” Mitchell 
[mask2|what]: funding a more promising drone program 
[mask3|why]: To meet the final contract specification 
and save the program

NER, SRL, Constituency Parsing Narrative Masking Mask Prediction

Question Type Identification Question Transformation Mask Prediction

Question: What did Rooster do when he looked at the photo of himself, Goose, and Maverick?
Masked Statement: Rooster [mask1|what] when he looked at the photo of himself, Goose, and Maverick..
Answer / [mask1|what]: reminisced about his father with a smile

Pre-training: Parallel Reading

Inference: Narrative RC

Figure 2: Illustration of the proposed approach, PARROT . During pre-training, we collect two parallel narratives,
N+ and N . We mask narrative-specific spans in N and pre-train the model to predict these spans by reading N+.
During inference, we transform the question into a masked statement, following the pre-training format. Then we
apply the pre-trained model to predict the answer based on the narrative and the masked statement. Note that for
illustrative purposes, N+ is shared between pre-training and inference, but in real scenarios, there is no overlap.

idea aligns with the classical model of narrative
theory (Genette, 1983), which emphasizes the per-
spectival nature of narratives – narratives encom-
pass not only the sequence of events (the story), but
also the ordering, granularity, point-of-view, and
localization (the discourse and narrating). Ideally,
comprehending either narrative would result in the
same understanding of the story. Therefore, we can
teach the model to develop reading comprehension
skills by asking questions based on one narrative
and encouraging the model to answer them by read-
ing the parallel narrative. Figure 1 illustrates this
concept. We will explain later how we operational-
ize this idea of asking and answering questions
through masked language modeling.

Learning from parallel reading offers two ad-
vantages. Firstly, by exposing the model to narra-
tive variations of the same story, we discourage its
reliance on text-matching and enhance its ability
to comprehend paraphrases, integrate information
from long contexts, and perform multi-hop reason-
ing (as seen in Q2 and Q3 in Figure 1). Secondly,
one narrative may contain information that is not
explicitly stated in the other narrative, but can be
implicitly inferred through a deeper understand-
ing of the context. Training a model to deduce

such implicit information empowers it to surpass
superficial understanding and grasp the implicit
information and underlying meaning within the
narrative (as seen in Q4 and Q5 in Figure 1). These
advantages have been demonstrated in pedagogy to
improve students’ reading comprehension abilities
(Schumaker et al., 1984; Grellet, 1981; Yano et al.,
1994; Sipe, 2001).

With this idea in mind, we propose PARROT 1,
a novel pre-training approach for zero-shot narra-
tive comprehension. Figure 2 shows an overall
illustration. It selectively masks important narra-
tive elements within one narrative, and then pre-
trains the model to predict these masked elements
by reading the parallel narrative. To encourage
PARROT to learn about a wide array of narrative el-
ements, we mask a diverse set of elements covering
characters, events, time, place, environments, and
more. Lastly, to enable PARROT to perform narra-
tive reading comprehension in a zero-shot manner,
we narrow the disparity between the pre-training
task of span prediction and the downstream task
of reading comprehension by aligning their data
formats.

1Stands for parallel reading for zero-shot narrative com-
prehension.



We conducted experiments on two narrative
reading comprehension benchmarks, narrativeQA
(Kočiskỳ et al., 2018) and FairytaleQA (Xu et al.,
2022), to evaluate PARROT . The results demon-
strate that without any human annotation, PAR-
ROT achieves performance that is comparable to
that of a fully supervised model. Furthermore, PAR-
ROT exhibits superior performance compared to su-
pervised models when applied to out-of-domain
datasets, demonstrating its effectiveness in transfer
learning scenarios.

Our contributions are three-fold:
• We present PARROT , a novel pre-training ap-

proach for effective zero-shot narrative com-
prehension.

• We introduce a novel parallel reading strategy
that involves utilizing different versions of nar-
ratives during pre-training to foster genuine
narrative understanding.

• Our approach achieves competitive or better
performance when compared to supervised
models, showcasing its effectiveness in narra-
tive comprehension tasks.

2 Related Works

Data-efficient reading comprehension has been
addressed by automatically generating (passage,
question, answer) triples for pre-training a model
(Lewis et al., 2019, 2021). However, it requires
annotated data to train a question-generation mod-
ule. One possible solution is to replace it with a
heuristic-based question-generation module (Heil-
man and Smith, 2010; Li et al., 2020; Lyu et al.,
2021). Another option is to replace natural ques-
tions with cloze questions by masking the an-
swer from the passage (Hermann et al., 2015; Hill
et al., 2015). Researchers have proposed mask-
ing and predicting recurring spans within the pas-
sage as answers (Bian et al., 2021; Ram et al.,
2021). In contrast to these approaches that focus
on general extractive reading comprehension, PAR-
ROT specifically addresses the unique challenge of
open-ended narrative comprehension and leverages
parallel reading for abstractive comprehension and
free-form question answering.

3 PARROT

In narrative reading comprehension, the input is a
narrative N and a question q, while the output is
a concise answer a. We develop PARROT , a zero-
shot solution for this problem. PARROT utilizes

a masked language modeling (MLM) based pre-
training approach, which incorporates a selective
span masking strategy to mask essential narrative
elements (Sec. 3.1) and a parallel reading strategy
to learn to predict the masked spans (Sec. 3.2).
Next, to utilize the pre-trained model in a zero-shot
fashion, we transform the downstream narrative
reading comprehension task to match the format of
the pre-training task (Sec. 3.3). Figure 2 shows an
overall illustration.

3.1 Selective Span Masking

In model pre-training, a commonly used technique
is masked language modeling (MLM), where spans
are randomly masked for the model to predict (De-
vlin et al., 2019; Raffel et al., 2020). In previous
works on pre-training for reading comprehension,
named entities and recurring spans were masked as
they are more closely associated with factual infor-
mation (Ram et al., 2021; Bian et al., 2021). How-
ever, for narrative comprehension, the model needs
to understand not just named entities but also vari-
ous other narrative elements such as events, causal-
ity, temporal relationships, environmental settings,
characters, their desires, personality traits, and re-
lationships with others, to name a few. Previous
masking strategies do not cover all these essential
elements adequately.

Therefore, to enhance the model’s ability to com-
prehend narratives, we incorporate a diverse set of
masked spans to encourage the learning of a wide
range of comprehension skills specific to narratives.
We carefully select three types of spans to mask.

• Named entities: Named entities play a crucial
role in narratives as they help identify char-
acters and settings (such as time and place)
within the narrative. We choose nine types of
named entities: 2 Person, Location, Geopoliti-
cal Entity, Facility, Organization, Time, Date,
Event, and Products.

• Semantic roles: Named entities alone can
not encompass all narrative elements, such
as settings like last week and a small town,
event causality, characters’ purpose, and more.
Since these narrative elements usually unfold
along with events, we focus on the associated
arguments of verbs and include five semantic
roles: 3 Direction (ARGM-DIR), Location

2We employ Spacy for NER. https://spacy.io/
3We employ AllenNLP for SRL. https://allenai.org/

allennlp

https://spacy.io/
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(ARGM-LOC), Time (ARGM-TMP), Pur-
pose (ARGM-PRP), Cause (ARGM-CAU),
and Manner (ARGM-MNR).

• Verb and adjective phrases: A narrative can
be seen as a sequence of events organized
by a narrator (Schank and Abelson, 2013).
To directly comprehend events, we identify
verb phrases using constituency parsing 4 and
mask them. Additionally, we mask adjective
phrases to enhance the understanding of nar-
rative settings and character characterization.

Given a narrative N , we first identify and mask
some spans, m(N ), and then pre-train a sequence-
to-sequence model to predict these spans using the
remaining text, N\m(N ), and the original narrative,
N . We refer to this model as PARROTsingle . The
loss function is

Lsingle = − log p
(
m(N ) | N\m(N ),N

)
. (1)

3.2 Parallel Reading
Predicting masked spans using the original narra-
tive N may result in the model trivially relying
on the superficial lexical overlap. To mitigate this
issue, we propose “parallel reading”. Instead of
solely masking and predicting spans within a sin-
gle narrative N , we leverage an additional parallel
narrative, denoted as N+, which tells the same
story as N but differs in granularity, point-of-view,
etc. By simultaneously reading N and N+ and
predicting the masked key information, we encour-
age the model to abstract the textual content and
foster a genuine and deeper comprehension of nar-
ratives, avoiding overreliance on superficial textual
matching clues. For example, in Figure 2, predict-
ing [mask2] and [mask3] in N based on N+ re-
quires more advanced comprehension skills, such
as understanding character motivation and event
causality.

Here we provide more details regarding paral-
lel reading. Without loss of generality, we assume
that N+ is longer than N . We selectively mask
spans in the shorter narrative, N , and utilize the
longer narrative, N+, as a source of evidence to
predict the masked spans, since the longer narra-
tive is likely to contain the necessary information
present in the shorter narrative.

However, N might also contain some spans that
are not answerable from N+. Masking such spans
can result in noise in the training data. To mitigate

4We employ AllenNLP for constituency parsing.

this noise, we apply two filtering steps: one at the
sentence level and another at the span level. At the
sentence level, for each sentence s in N , we require
the Rouge-1 Precision score (Lin, 2004) between
s and N+ to surpass a predefined threshold. If
it does not, we do not mask spans from s. This
criterion ensures that the remaining sentences in
N align closely with the corresponding content in
N+. At the span level, we selectively mask spans
in N that directly or indirectly appear in N+. For
spans that correspond to a named entity, we verify
their presence in N+ using exact match. For spans
that correspond to semantic roles or constituency
phrases, which are more likely to be paraphrased,
we adopt a more lenient criterion. For them, we
calculate the Rouge-1 Precision score between the
span and N+, setting a threshold to determine the
acceptability of the span candidates for masking.

Lastly, we pre-train the model to predict the
masked content within N , given the concatenation
of the masked narrative, N\m(N ), together with the
longer narrative, N+. The loss function is

Lparallel = − log p
(
m(N ) | N\m(N ),N+

)
. (2)

3.3 Adapting to Reading Comprehension
In general, after the MLM pre-training, the pre-
trained model requires fine-tuning with additional
data to adapt to the specific downstream task. This
fine-tuning is necessary because the pre-training
task and the downstream task can be in different
formats. However, in this paper, we do not assume
access to the availability of any fine-tuning data
and directly utilize the pre-trained model in a zero-
shot manner. The key insight is that the reading
comprehension task can be transformed into the
MLM task. For example, in Figure 2, the question
“What did Rooster do when he looked at the photo?”
can be transformed into “Rooster [mask] when
he looked at the photo”, and the answer can be
obtained by filling in the masked part. To achieve
this transformation, we use QA2D (Demszky et al.,
2018), which leverages a neural sequence model to
generate masked statements from questions.

One drawback of this transformation strategy, as
well as the pre-training strategy, is that the masked
statement does not contain the question-type in-
formation typically conveyed by the wh-word in
questions. For instance, without the original what
question with the answer of “reminisced about his
father with a smile”, the masked statement in our
example from Figure 2 can also be interpreted as



Wh- Type Span Type

Who NER-PERSON
When NER-TIME/DATE, ARGM-TMP
Where NER-LOC/GEO/FAC, ARGM-LOC/DIR
Why ARGM-CAU/PRP
How ARGM-MNR, ADJP
What Others

Table 1: The mapping between the type of question and
the corresponding type of masked span. This mapping
enables the model to identify the appropriate type of
question during pre-training.

a how question, leading to the possibility of fill-
ing the mask with a different answer such as “felt
delighted”.

To mitigate this ambiguity, we introduce a spe-
cial type token preceding the mask to provide more
accurate information about the question type. This
token, as we illustrated in Figure 2, is typically
a wh-element, such as who and what, which is
extracted from the original question. To extract
these words, we employ a constituency parser
to parse the question and then identify the ele-
ments labeled with syntactic tags such as “WHNP”,
“WHADVP”, “WHADJP”, or “WHPP”. During pre-
training, since we lack the actual questions, we in-
fer the question type based on the type of masked
spans. The mapping between the span type and the
question type is provided in Table 1.

By transforming the question to a masked state-
ment during inference and incorporating the ques-
tion type during pre-training, we establish a consis-
tent data format for both pre-training and inference.
This thereby empowers the model to perform zero-
shot inference without explicit fine-tuning.

4 Experiments

In this section, we evaluate the performance of
PARROT .

4.1 Datasest
Datasets for Pre-training: For parallel reading in
the pre-training phase, we utilize NarraSum (Zhao
et al., 2022), a dataset of 122K parallel narrative
pairs obtained from plot descriptions of movies and
TV episodes. After processing, we obtain a total
of 57.4K paired narratives and 154.5K question-
answer pairs. The average lengths of N and N+

are 125 and 926 tokens, respectively. Each narra-
tive pair includes 2.7 masked spans on average.

To reduce input length and enhance computa-
tional efficiency, we partition the shorter narrative

N into smaller segments and predict the spans
within each segment separately. However, we also
need to strike a balance as excessively short seg-
ments would increase the overall number of train-
ing instances. Therefore, we opt to divide N into
segments based on every three sentences.
Datasets for Evaluation: To evaluate the perfor-
mance of PARROT , we conduct experiments on two
narrative reading comprehension benchmarks: Nar-
rativeQA (Kočiskỳ et al., 2018) and FairytaleQA
(Xu et al., 2022). Since PARROT is zero-shot, we
solely use the test sets of these datasets for evalu-
ation. The narratives in FairytaleQA are derived
from children’s stories, while the narratives in Nar-
rativeQA consist of plot summaries from books
and movie scripts. For NarrativeQA, to avoid any
potential overlap with the pre-taining data, we only
consider instances derived from books for evalua-
tion purposes. The average length of the narratives
in these datasets is 150 and 659 tokens, respec-
tively, and their test sets contain 1,007 and 10,557
question-answer pairs, respectively.

4.2 Setup

Implementation Details: The underlying model
in PARROT is a T5-base (Raffel et al., 2020). We
chose T5 because it has been pre-trained on a simi-
lar MLM task. Furthermore, compared with other
MLM-based pre-trained models such as BART, T5
only predicts the masked tokens, making it more
computationally efficient. During pre-training, we
employ the AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of 3× 10−5 and
a batch size of 512. We choose a large batch size
because the pre-training data can be noisy. We
incorporate warmup for the first 50 steps and im-
plement early stopping based on the model’s perfor-
mance on the validation set. Training the models
is conducted on four Tesla 3090 GPUs with 24 GB
memory, taking approximately 4 hours to complete
the pre-training process.
Baselines: Our first baseline is an information
retrieval (IR) baseline adopted by Kočiskỳ et al.
(2018), which selects the most similar sentence in
the narrative to the given question and considers it
as the answer. For computing this similarity, we
use TF-IDF based cosine similarity. To establish
stronger baselines, we compare PARROT with the
model described in Lewis et al. (2021), which auto-
matically generates question and answer pairs from
the narrative. This involves utilizing an answer



FairytaleQA NarrativeQA
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

T5 Finetuned on FairytaleQA 54.64 40.43 54.03 45.29 25.73 44.59
T5 Finetuned on NarrativeQA 49.64 38.45 49.10 65.05 36.04 64.49

IR (TF-IDF) (Kočiskỳ et al., 2018) 21.64 14.30 20.82 16.61 7.79 15.67
AE-QG (Lewis et al., 2021) 43.29 29.81 42.89 53.61 28.11 53.27
Vicuna-13B (Chiang et al., 2023) 37.52 20.44 35.98 32.59 17.37 31.46
ChatGPT 44.32 27.10 43.49 41.27 24.63 40.07

PARROTsingle 40.32 30.35 40.01 50.01 26.78 49.60
PARROT 48.56 36.83 48.10 55.71 30.81 55.32

Table 2: Results evaluated on FairytaleQA and NarrativeQA by Rouge scores. PARROT outperforms all baselines
and achieves comparable or superior performance compared to supervised models in the out-of-domain setting.

extraction (AE) model and a question generation
(QG) model trained on three MRC datasets: NQ
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), and SQuAD (Rajpurkar et al., 2016). With
these models, we generate question and answer
pairs from the narratives in NarraSum, and then
train a reading comprehension model based on T5-
base. We refer to this baseline as AE-QG.

Additionally, we compare PARROT with Chat-
GPT 5, a state-of-the-art large language model, and
Vicuna-13B (Chiang et al., 2023), one of its best
open-source alternatives. To use these models, we
use the instruction “Please generate a brief
answer rather than a complete sentence
to the following question based on the
provided passage as evidence.”, alongside
the passage and question that are appended. 6

Lastly, we compare with fine-tuned models. We
fine-tune the T5-base model on the training sets
of narrativeQA and FairytaleQA, resulting in two
fine-tuned models. We treat these results as upper
bounds due to their supervised nature.
Evaluation Measure: Following the official evalu-
ation of the two benchmarks, we use Rouge scores
(Lin, 2004) between the predicted and the gold
answers to evaluate the models.

4.3 Results

Table 2 presents the performance of PAR-
ROT and baselines on FairytaleQA and Narra-
tiveQA datasets. PARROT exhibits superior perfor-
mance, significantly surpassing all zero-shot base-
lines (approximate randomization (Noreen, 1989;
Chinchor, 1992), p < 0.01) . Additionally, it
achieves performance that is 89.0% and 85.8%

5https://chat.openai.com/
6We tried different instructions and select the best-

performing one.

comparable to those of fully supervised upper-
bounds in terms of Rouge-L (48.10 vs. 54.03 and
55.32 vs. 64.49). These results demonstrate the ef-
fectiveness of PARROT in narrative reading compre-
hension. When comparing the strategies of single
and parallel reading, PARROT achieves significantly
higher performance compared to its single-reading
counterpart, PARROTsingle , on both datasets. This
result emphasizes the crucial role of parallel read-
ing in enhancing model performance.

We also compare PARROT to supervised models
under the out-of-domain setting, i.e., training the
supervised model on one dataset and evaluating it
on another. These results are displayed in gray font
in the table. PARROT demonstrates competitive per-
formance on FairytaleQA (Rouge-L of 48.10 vs.
49.10) and superior performance on NarrativeQA
(Rouge-L of 55.32 vs. 44.59). This further demon-
strates that PARROT can acquire general narrative
comprehension skills and effectively apply them to
diverse narratives.

Among the large language model baselines,
ChatGPT exhibits stronger performance than
Vicuna-13B. AE-QG models also achieve strong
performance. However, these models require ad-
ditional training data for training the answer ex-
traction and question generation components. Fur-
thermore, the generated question-answer pairs may
contain errors, which could potentially impact the
model’s overall performance during pre-training.

4.4 Human Evaluation

To obtain a more reliable assessment of the model
performance, we further conduct a human evalu-
ation via Amazon Mechanical Turk (AMT). We
randomly select 100 test instances from the test
sets of both datasets. For each instance, we show
three independent annotators the question, correct

https://chat.openai.com/


FairytaleQA NarrativeQA

IR (TF-IDF) 2.12 2.37
AE-QG 2.56 2.91
Vicuna-13B 2.36 2.61
ChatGPT 2.49 2.86
PARROTsingle 2.30 2.78
PARROT 2.71 3.10

Table 3: Results of human evaluation on FairytaleQA
and NarrativeQA.

answers, and the answers generated by various sys-
tems. We then ask annotators to rate the quality
of the predicted answers on a Likert scale ranging
from 1 to 5. To maintain the evaluation quality, we
require annotators to be AMT Masters based in the
United States, with more than 1,000 HITs approved
and an approval rate exceeding 98%. We manually
review the annotation results, and if we identify
annotators consistently providing low-quality an-
notations, we block them and re-assign their tasks.
Annotators are compensated at a rate of $14 per
hour, exceeding the local minimum wage.

Table 3 shows the results of human evaluation.
The inter-annotator agreement score is 0.7003 in
Gwet’s gamma. Results from both datasets, along
with the automatic measures, consistently demon-
strate that Parrot outperforms the baseline models.

5 Analysis

We conduct analysis to better understand the be-
havior of PARROT .

5.1 Type of Masked Spans

One of our work’s major contributions is incor-
porating a carefully selected and diverse set of
masked spans geared toward narrative comprehen-
sion. To highlight the diversity, we analyze the dis-
tributions of different question types and the types
of masked spans in the pre-training data. The re-
sults are presented in Figure 3. In terms of question
types, the pre-trained data contains six major types:
what (41.7%), who (25.6%), when (13.4%), where
(10.4%), why (5.6%), and how (3.3%). In terms of
masked spans, it shows that named entities (NE),
semantic roles (SR), and constituency phrases (CP)
are evenly distributed within the pre-training data.
Specifically, named entities are predominantly rep-
resented by PERSON (72.0%) and ORG (16.1%)
categories. Within semantic roles, Time (41.5%),
Location (25.5%), and Purpose (14.9%) are the top
three categories. Within the constituency phrases,

What
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Figure 3: Distribution of the types of wh-elements and
the sources of masked spans in pre-training data.

FairytaleQA NarrativeQA

Random 8.38 / 3.29 / 8.31 13.54 / 4.02 / 13.52
None 11.99 / 6.14 / 11.84 10.67 / 4.38 / 10.54

+ NE 35.10 / 23.89 / 34.98 48.72 / 24.93 / 48.53
+ SR 45.55 / 34.20 / 45.21 54.83 / 29.95 / 54.46
+ CP 48.56 / 36.83 / 48.10 55.71 / 30.81 / 55.32

Table 4: The contribution of each source of masked
spans to the final performance (R-1/R-2/R-L). We start
with T5-base with and without further pre-training (Ran-
dom and None). We then incrementally introduce
named entities (NE), semantic roles (SR), and con-
stituency phrases (CP) into the pre-trained data.

almost all of them fall under the category of verb
phrases.

To investigate the impact of different mask types
on the overall performance, we conduct an ablation
study. During the construction of the pre-training
data, we gradually expand the type of masked el-
ements from named entities to semantic roles and
constituency phrases. We also compare with a ran-
dom masking strategy that aligns with the original
pre-training objective of T5. The performance of
the models trained on these versions of the pre-
trained data is presented in Table 4. It reveals that
focusing on named entities can improve the model
performance, which aligns with previous research
findings. However, relying solely on named enti-
ties is insufficient to encompass all narrative ele-
ments. By incorporating semantic roles, the model
achieves a substantial improvement in performance.
By including constituency phrases, we observe a
further enhancement. On the contrary, when we
continue pre-training with a random span masking
strategy, we do not observe improvement in model
performance. These results support our hypothe-
sis that incorporating a diverse range of masked
spans can significantly enhance models’ ability of
narrative comprehension.
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Figure 4: Fine-grained model performance on Fairy-
tableQA w.r.t. the types of questions (top) and narrative
elements (bottom).

5.2 Decomposition of Model Performance
We proceed to conduct a thorough analysis of the
model’s performance at a finer granularity. To ac-
complish this, we partition the FairytaleQA dataset
into smaller subsets based on question types and
narrative elements, as annotated within the dataset.
Then we evaluate the model’s performance on the
individual subsets and compare it with the perfor-
mance of the supervised model. The results are
illustrated in Figure 4.

Comparing the results with the supervised model,
PARROT demonstrates competitive performance in
questions that involve identifying characters (who)
and their activities (what), establishing causal rela-
tionships between events (why), and understand-
ing the setting of the narrative (where). How-
ever, when dealing with more intricate narrative
aspects such as pinpointing outcomes, predicting
unknown events, and deciphering characters’ emo-
tional states (how), PARROT exhibits a larger perfor-
mance gap. This particular strength and weakness
align with the distribution of the types of masked
spans present in the pre-training data. We leave
enhancing the comprehension of these narrative
components for future work.

5.3 Impact of Parallel Reading
In addition to incorporating a diverse array of nar-
rative elements, a significant contribution of PAR-
ROT is leveraging parallel reading to abstract the
textual content and comprehend the underlying
meaning of the narrative. As discussed in Section
4.3, PARROT achieves better overall performance
compared to PARROTsingle . In this section, we an-
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Figure 5: Model performance on FairytaleQA (left) and
narrativeQA (right) w.r.t. the abstractiveness level be-
tween the question and the narrative. We report Rouge-L
Recall to evaluate whether the correct answer is included
in the predicted answer.

alyze how parallel reading impacts the model’s
performance when the question is less lexically
overlapped with the narrative.

To accomplish this, we divide the test set into
subsets based on the level of abstractiveness be-
tween the question and the narrative. More specifi-
cally, we first identify the most similar sentence in
the narrative with the question as the evidence sen-
tence, and then use the sum of Rouge-1 precision
and Rouge-2 precision between the question and
the evidence sentence to approximate the level of
abstractiveness. Higher Rouge Precision indicates
lower abstractiveness. Figure 5 shows the model’s
performance based on the degree of abstractiveness
between the question and the narrative.

The results demonstrate that, in general, as
the question becomes increasingly abstractive (the
right side of the x-axis), the performance gap be-
tween PARROTsingle and PARROT becomes more
significant. This finding indicates that compared
with PARROTsingle , PARROT is better at understand-
ing abstractive questions and finding answers based
on genuine comprehension, rather than mere text
matching. It supports our motivation that parallel
reading enhances the model’s ability to compre-
hend the underlying meaning of the narrative.

Interestingly, in highly extractive scenarios (the
left side of the x-axis), PARROT also outperforms
its single-reading counterpart on FairytaleQA. This
is because PARROTsingle tends to directly copy text
from the narrative, which sometimes results in er-
rors related to answer resolution when the copied
part includes a pronoun instead of the proper entity
mention. In contrast, PARROT is capable to select
the appropriate entity mention as the answer, rather
than mechanically copying the pronoun.
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ing models.

5.4 Scaling to Larger Models

We further investigate the potential benefits of PAR-
ROT ’s pre-training strategy for larger models. To
this end, we experiment with different sizes of the
underlying T5 model, namely base (220M), large
(770M), XL (3B), XXL (11B), and UL2 20B (Tay
et al., 2023), a T5-like large model. We fine-tune
the entire parameters for T5 base and T5 large. For
larger models, we utilize LORA (Hu et al., 2022)
to facilitate more efficient fine-tuning due to the
large computation. The results of these models are
presented in Figure 6.

The results show that as we increase the size of
the underlying model, the performance improves
gradually, approaching and eventually surpassing
the performance of the fine-tuned baselines. This
experiment indicates that PARROT can effectively
enhance a model’s ability of narrative comprehen-
sion irrespective of its size.

5.5 Qualitative Analysis

Table 5 shows two examples of generated answers
from different systems. To address the first ques-
tion correctly, the model must distinguish that
“Tsui” refers to the young man rather than “Rose-
Red,” who is his wife. Vicuna falls short in making
this distinction. ChatGPT offers a consecutive an-
swer that lacks useful information. In contrast,
PARROT provides the correct answer. The second
narrative is notably longer than the first, with the
answer to the question not explicitly provided in
the text. To answer this question, the model needs
to establish a connection between the earlier plot
when Ian requested the finest horse and the later
plot where he won the race. AE-QG fails to estab-
lish this connection, resulting in a lack of useful
information. Vicuna and ChatGPT partially answer
the question by mentioning the race, but do not em-
phasize Ian’s motivation to “win the race,” which

Narrative I: Two years passed, and the youth no longer thought of any danger.
Hence, when the flowers began to bloom in the spring, Rose-Red went driving
in a small wagon outside the city, near the river. And there one of the prince’s
servants saw her, and informed his master. The latter sent for the youth, who,
since he could not conceal the matter, told him the whole story exactly as it
had happened. Said the prince: “The whole blame rests on Rose-Red. I do not
reproach you. Yet since she is now your wife I will let the whole matter rest.
But Molo will have to suffer for it!”
Question: Why did Tsui tell the prince the whole story exactly as it had
happened?

Model Outputs:
Vicuna-13B: Rose-Red told the prince the whole story because the prince
asked her to.
ChatGPT: To inform the prince of what had happened.
AE-QG: He could not conceal the matter.
PARROT : Because he could not conceal the matter.

Reference: He could not conceal the matter.

Narrative II: “That is a pity,” returned the young man politely, but in his heart
he rejoiced, for he wished to be alone. Leaving the house, he entered a grove
of trees which stood behind, and took the box from his pocket. He raised the
lid, and out flew the three little birds. “Good master, what shall we do for
thee?” asked they, and he answered, “Bring me the finest horse that ever was
seen, and the grandest dress, and glass shoes.” “They are here, master,” said
the birds, and so they were, and never had the young man seen anything so
splendid. Mounting the horse he rode into the ground where the horses were
assembling for the great race, and took his place among them. Many good
beasts were there which had won many races, but the horse of the fisher’s son
left them all behind, and he was first at the winning post. The king’s daughter
waited for him in vain to claim his prize, for he went back to the wood, and
got off his horse, and put on his old clothes, and bade the box place some gold
in his pockets. After that he went back to the weaver’s house, and told him
that the gold had been given him by the man who had won the race, and that
the weaver might have it for his kindness to him.
Question: Why did Ian need the finest horse?

Model Outputs:
Vicuna-13B: Ian needed the finest horse for the race.
ChatGPT: To participate in the great race.
AE-QG: A pity.
PARROT : To win the race.

Reference: He wanted to win the horse-race.

Table 5: Sampled answers generated by different sys-
tems. For each example, we show the narrative, model
predicted answers, and the referenced answer.

is the primary reason he sought the “finest” horse.
Thanks to the long-term reasoning skills acquired
during parallel pre-training, PARROT accurately an-
swered this question.

6 Conclusion

We introduce PARROT , a novel zero-shot approach
for narrative reading comprehension based on pre-
training. By selectively masking significant el-
ements within the narrative and pre-training the
model to predict these spans through parallel read-
ing, PARROT learns to abstract essential textual con-
tent and gains a genuine understanding of the narra-
tive. Experimental results on two diverse narrative
datasets demonstrate the superiority of PARROT ,
showcasing its effectiveness in enhancing narrative
reading comprehension. Our analysis further em-
phasizes the significance of employing a diverse
range of masked spans and leveraging the parallel
reading strategy during model pre-training.



Limitations

One limitation of our approach, as discussed in
the analysis section, is that the selective masking
strategy employed in PARROT may not adequately
encompass some intricate narrative elements such
as event prediction and user emotion. Exploring
these aspects is left as future work. Another limi-
tation is that we rely on specific NLP modules for
identifying the spans to be masked and transform-
ing natural questions into masked statements. It is
worthwhile to investigate the potential of employ-
ing large language models to replace these special-
ized modules.

Additionally, our focus in this paper is specifi-
cally on narrative question answering. While we
have demonstrated the effectiveness of PARROT in
this particular task, we have not extensively ex-
plored its performance in other narrative compre-
hension tasks such as summarization, or scenarios
where questions are not well-formed. Finally, we
only conduct experiments on English datasets. It
would be beneficial to further explore our approach
to other languages.

Ethical Considerations

To address energy consumption concerns, we con-
duct the majority of experiments of PARROT using
the relatively smaller T5-base model. We develop
and test PARROT on publicly released datasets.
Since we only pre-trained and tested on a few
datasets, the developed model may exhibit incor-
rect answers for specific questions or demonstrate a
bias towards certain types of narratives. We would
encourage downstream users of PARROT to proac-
tively anticipate and mitigate these potential risks.
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